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ABSTRACT

The purpose of this paper is to deal with the effect of the complex geometry of the porosity of CVI SiC/SiC
composites on the elastic behaviour at the scale of the tow, which is an intermediate scale before the
modelling of the woven composite. For that purpose, the developed numerical approach consists in
the generation of representative micro-structures and in a numerical periodic homogenization procedure
for porous materials. As a result, the effective stiffness tensor of the tow is obtained. It will be useful in a
further modelling at the upper scale (at scale of the woven composite the tow could be considered as
homogeneous). In order to highlight the relevance of this approach, it is compared to a commonly used
analytical Mori-Tanaka model. The anisotropy evaluated from the numerical approach is much higher
than the anisotropy evaluated from the Mori-Tanaka model. Moreover, this numerical approach is able
to evaluate the stress distribution within the composite and especially the high level of stress concentra-
tion induced by the complex geometry of the porosity. This high level of stress concentration will have to

be taken into account when dealing with the initiation of damage within the composite.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the context of the development of fusion nuclear reactor, SiC/
SiC composites are candidate for structural or functional applica-
tions at elevated temperature. A multi-scale approach is required
to have a predictive modelling of their complex behaviour. The
purpose of this paper focuses on the elastic behaviour of the com-
posite at the scale of the tow (Fig. 1). CVI (chemical vapour infiltra-
tion) composites are studied and emphasis is put on the effect of
the complex geometry of the porosity on the homogenized behav-
iour and on the local stress distribution.

2. Numerical homogenization procedure
2.1. Generation of representative CVI micro-structures

In this paper, the micro-structure is assumed to be invariant in
the direction of the fibres and the cross-section is defined from a
random distribution of fibres. The diameter of the fibres is assumed
to be the same for all the fibres (7.5 pm which corresponds to Tyr-
annoSA3 fibres) and a common volume fraction of fibres of 40% is
used to generate a micro-structure of 150 fibres randomly distrib-
uted in a square area of 129 x 129 um?. Five different distributions
of fibres have been used.

For CVI composites, the process of SiC deposition on the fibres
doesn’t allow to fill completely the inter-fibres space so that a
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residual porosity with a complex geometry appears (Fig. 1 [1]).
To represent the CVI process the infiltrated matrix is simulated
by a layer of constant thickness of 3 pum at the surface of the fibres.
The geometry of the porosity obtained with this representation is
qualitatively in good agreement with the experimental observation
(Figs. 1 and 2). The volume fractions of porosity obtained for the 5
distributions of fibres are quite similar (6.8%, 7.2%, 7.4%, 7.5% and
7.5%) with a mean value of 7.3% which is in good agreement with
experimental measurements [2].

The procedure to generate and to mesh such random micro-
structures has been developed with the free software Salome [3].

2.2. Material parameters

For the matrix, the local anisotropy induced by the local crystal-
lographic texture of the SiC deposition [4] is neglected and the
elastic behaviour is assumed to be isotropic with a Young modulus
and a Poisson coefficient of 400 GPa and 0.18, respectively.

Fibres candidate for nuclear applications are Hi-Nicalon S or
TyrannoSA3 fibres. The elastic properties of this last generation
of SiC fibres are close to the properties of the matrix. The Young
modulus (measured at CEA [5]), is 389 GPa and the Poisson coeffi-
cient is assumed to be 0.18.

2.3. Numerical modelling

In order to solve the elastic problem of periodic homogenization
with a finite element code (CAST3M [6]), the geometry of the
micro-structure described in Section 2.1, defined in a parallelepi-
ped volume, has been meshed using linear prismatic elements
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Fig. 1. Typical micro-structure of a CVI composite at the scale of the tow [1].

Fig. 2. Simulated micro-structure (due to the resolution of the picture, the mesh on
the micro-structure is hard to see).

(6 nodes and 6 integration points), with one element in the
thickness. The resulting mesh is periodic (i.e. each node on a sur-
face has a corresponding node on the opposite surface). The set
of differential equations used to solve this elastic problem are
the classical volume equations added to specific boundary
conditions.

2.3.1. Volume equations

For all points in the micro-structure, the stress tensor (o)
must satisfy the condition of local equilibrium (Eq. (1)), the stress
and strain (&) tensors are related by the 4th rank stiffness tensor K
with the Hooke’s law (Eq. (2)), and the displacement (u) must
satisfy the compatibility equation (Eq. (3)) (div and grad are the
classical divergence and gradient operators and (K:¢g); =
>ociKijien)

div(g) =0, )
ag=K:g, (2)
6= (grad(w) + grad (w). G)

The resolution of the problem, numerically solved using a finite ele-
ment method, consists in finding g and u for all points in the micro-

structure satisfying Eqgs. (1)-(3) and the following boundary
conditions.

2.3.2. Periodic boundary conditions for porous materials

In order to apply a macroscopic stress tensor (X) with periodic
conditions on this kind of porous micro-structure, the following
boundary conditions have been implemented in the finite element
code CAST3M [6].

The micro-structure is defined in a parallelepiped volume V
with 6 planarsurfaces (S1,S,, S3, 54, S5, S6), S and S;, 3 being opposite
surfaces. Each surface S; can be divided into two parts: the effective
surface S¥ and the surface associated to the porosity SP(S; =
Sfff U SP"). To account for porosity, the normal stress g.n; on Sfff
has to satisfy Egs. (4) and (5), with n; the outing normal at the sur-
face S;. As g.n; on S'" can be defined as a null vector, the average of
an; on the whole surface S; is equal to Zn;.

o.n; = oz.n;, 4)
IS

o=t (5)
IS¢

Additional conditions are applied on 3 points of the micro-structure
to avoid the rigid motion of the micro-structure (i.e. to ensure the
unicity of the solution).

At this stage, the simulation can be performed. This set of con-
ditions corresponds to Static Uniform Boundary Conditions [7]: the
stress is uniform on each point of Sfff (see Eq. (4)).

Finally, the periodicity condition is satisfied if the difference of
displacement between two corresponding points (M;, M;,3) in
opposite surfaces (Sfff,Sfﬂ) is constant (Eq. (6) with (M;,M;,;),
two corresponding points arbitrary chosen in (Sfff , fﬂ)). Fig. 3 gives
a schematic visualization of Eq. (6)

u(Mi) — u(Miy3) = u(M;) — u(Mj_5). (6)

Numerically, these conditions (Eq. (6)) are satisfied through the
introduction of Lagrange multipliers. As a consequence, the solution

M Miss
Fig. 3. Schematic visualization of the periodic boundary condition (the red vector is

constant for all corresponding points in opposite surfaces, then u(M;) — u(Mi,3) =
u(M;) - u(M;,5)).
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of the problem gives rise to reactions forces at each point (node) of
S% so that the stress is no more uniform on S%.

2.3.3. Post-treatment: the effective behaviour

It can be demonstrated [8] (and it is numerically verified) that
the mean stress on the whole micro-structure V (including poros-
ity, where ¢ is defined as a null tensor), < g>v, is equal to the mac-
roscopic applied stress X (Eq. (7))

<g>y=2X. (7)

On the other hand, the mean strain < g>y has to be evaluated on
the micro-structure but the strain cannot be evaluated within the
porosity (i.e. the displacement field is not defined). As it is demon-
strated [8] that Eq. (6) is equivalent to Eq. (8), the mean strain can
be evaluated from the displacements of three couples of corre-
sponding points (one couple per couple of opposite surfaces)

u(Mi) — u(Miy3) =< g>v.MiMi, 3. (8)

Finally, the effective stiffness tensor of the micro-structure K (Eq.
(9)) can be fully determined from six different simulations per-
formed with six different applied stresses X

<o>y =K< e>y. (9)

The effective stiffness tensor presented in Section 3 is averaged on
the results obtained for five different micro-structures.

3. Effect of porosity on the effective behaviour

In order to emphasize the relevance of this numerical approach,
a classical analytical Mori-Tanaka model (see equations in [9]) is
used assuming a simplified geometry of the porosity (circular cyl-
inders with a volume fraction of 7.3%). In this calculation, the elas-
tic heterogeneity between matrix and fibres (400 and 389 GPa) is
reasonably neglected (the Young modulus is assumed to be equal
to 395 GPa for both the matrix and the fibres). The effective stiff-
ness tensors obtained with the finite element and the Mori-Tanaka
models, K€ and KMT, are given in Eq. (10). To visualize the anisot-
ropy of the behaviour the evolution of the apparent elastic modu-
lus as a function of the angle between the fibres and the tensile test
direction is represented on Fig. 4
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Fig. 4. Evolution of the apparent elastic modulus as a function of the tensile test
direction.
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When the tensile test direction is parallel to the direction of the fi-
bres, the two models are consistent and the apparent Young modu-
lus can be obtained with a classical mixture rule for a parallel
assembly. In this direction, there is no effect of the geometry of
the porosity.

On the contrary, when the tensile test direction is perpendicular
to the direction of the fibres, the Mori-Tanaka model is much stif-
fer than the finite element model. This difference reveals that the
complex shape of the porosity has to be taken into account through
a numerical approach to obtain a good description of the elastic
anisotropy of the composite.

4. Effect of porosity on the stress distribution

The numerical approach can be used to evaluate the full distri-
bution of the local stresses which cannot be evaluated from analyt-
ical models.

4.1. Average stresses

The evolution of the normalized average tensile stresses (aver-
age tensile stress divided by the macroscopic tensile stress) within
the fibres and the matrix is represented on Fig. 5 as a function of
the tensile test direction. The main result is that the evolution of
these average stresses is not significant compared to the evolution
of the macroscopic behaviour (Section 3). As a consequence, a more
detailed description of the stress distribution is required.
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Fig. 5. Evolution of the normalized average tensile stress (average tensile stress/
macroscopic tensile stress) within the fibres and the matrix as a function of the
tensile test direction.
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4.2. Stress heterogeneities

For a tensile test direction parallel to the direction of the fibres,
the micro-structure can be regarded as a parallel assembly (with
identical Poisson coefficients). Consequently, the stress field is uni-
axial and homogeneous within the fibres and the matrix (the value
of the stress in each constituent is equal to the average values gi-
ven in Section 4.1).

For a tensile test direction perpendicular to the direction of the
fibres, the statistical distributions of the local tensile stress (i.e. the
stress in the direction of the tensile test) can be observed on Fig. 6.
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Fig. 6. Distribution of the tensile stress within the fibres and the matrix for a
macroscopic tensile test (1 GPa) in the transverse direction.

Fig. 7. Axial stress field for a macroscopic tensile test (1 GPa) in the transverse
direction.

These distributions exhibit two clearly distinct peaks and large
queues from —0.5 up to 4 times the macroscopic stress. This wide
distribution is correlated to the spatial distribution of the stress:
the porosity of CVI composites induces a high level of stress con-
centration but also a discharge of the stress in parts of the compos-
ite (Fig. 7).

The wider stress distribution in the matrix than in the fibres can
be explained by the fact that the matrix is directly in contact with
the porosity.

5. Conclusion

To account for the effect of the complex geometry of the poros-
ity observed in CVI composites at the scale of the tow, a numerical
homogenization procedure has been developed. This procedure
consists in the generation of representative micro-structures and
in a numerical periodic homogenization procedure for porous
materials. This numerical approach is able to evaluate both the
effective elastic behaviour of the tow and the stress heterogene-
ities within the tow.

As a result, the effective stiffness tensor of the tow K (Section 3)
is now available and can be used in a further modelling at the
upper scale. At the scale of the woven composite, the tow could
be regarded as homogeneous with the homogenized stiffness ten-
sor K. The condition of scale separability, associated to the size of
the representative volume element, will be discussed in a further
work.

A comparison between this numerical approach and a classical
Mori-Tanaka model reveals that the complex geometry of the
porosity plays a significant role on the anisotropy of the effective
behaviour.

Finally, such a numerical approach is able to evaluate the distri-
bution of the local stresses within the composite. An important re-
sult is that the complex geometry of the porosity induces strongly
heterogeneous stress distribution with a high level of stress con-
centration that will have to be taken into account when dealing
with damage initiation especially in the matrix in which the stress
distribution is the widest.
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